Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
FEBS Open Bio ; 12(1): 285-294, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540045

ABSTRACT

Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti-coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS-CoV-2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell-based SARS-CoV-2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , COVID-19/prevention & control , Plant Preparations/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , COVID-19/virology , Chlorocebus aethiops , Coronavirus M Proteins/antagonists & inhibitors , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Preparations/chemistry , Plant Preparations/metabolism , Protein Binding , Protein Conformation , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Stephania/chemistry , Vero Cells
2.
Tohoku J Exp Med ; 254(2): 71-80, 2021 06.
Article in English | MEDLINE | ID: covidwho-1262562

ABSTRACT

Olfactory disorders are one of the characteristic symptoms of the coronavirus disease of 2019 (COVID-19), which causes infection and inflammation of the upper and lower respiratory tract. To our knowledge, there are no treatments for COVID-19-related olfactory disorder. Here, we report five olfactory disorder cases in COVID-19, treated using the Japanese traditional (Kampo) medicine, kakkontokasenkyushin'i. We treated five patients with mild COVID-19 at an isolation facility using Kampo medicine, depending on their symptoms. Patients with the olfactory disorder presented with a blocked nose, nasal discharge or taste impairment. Physical examination using Kampo medicine showed similar findings, such as a red tongue with red spots and sublingual vein congestion, which presented as blood stasis and inflammation; thus, we prescribed the Kampo medicine, kakkontokasenkyushin'i. After administration, the numeric rating scale scores of the smell impairment improved within 3 days from 9 to 3 in case 1, from 10 to 0 in case 2, from 9 to 0 in case 3, from 5 to 0 in case 4, and from 9 to 0 within 5 days in case 5. Following the treatment, other common cold symptoms were also alleviated. Kakkontokasenkyushin'i can be used for treating nasal congestion, rhinitis, and inflammation in the nasal mucosa. The olfactory disorder in COVID-19 has been reportedly associated with inflammation and congestion, especially in the olfactory bulb and olfactory cleft. Kakkontokasenkyushin'i may be one of the treatment alternatives for the olfactory disorder with rhinitis in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Medicine, Kampo/methods , Olfaction Disorders/drug therapy , Plant Preparations/therapeutic use , Adolescent , Adult , COVID-19/complications , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Female , Humans , Japan , Male , Olfaction Disorders/complications , Olfaction Disorders/virology , Plant Preparations/chemistry , Plant Preparations/pharmacology , Rhinitis/complications , Rhinitis/drug therapy , Rhinitis/virology , SARS-CoV-2/physiology , Smell/drug effects , Treatment Outcome , Young Adult
3.
Expert Rev Clin Pharmacol ; 14(5): 623-633, 2021 May.
Article in English | MEDLINE | ID: covidwho-1132334

ABSTRACT

INTRODUCTION: The COVID-19 global pandemic is a public health emergency due to its high virulence and mortality. Many vaccine development studies at clinical trials are currently conducted to combat SARS-CoV-2. Plants are a rich source of phytochemicals with different biological activities, including antiviral activities, which are the focus of many studies. AREAS COVERED: This review shows compounds of traditional plants listed on RENISUS list have therapeutic properties against SARS-CoV-2 targets. EXPERT OPINION: The rise of new variants, more pathogenic and virulent, impacts in the increase of mortality from SARS-CoV-2 infection, and thus, the control of the outbreaks of disease remains a global challenge. Other's drug and vaccines development is an essential element in controlling SARS-COV-2. Therefore, it is imperative that approach to tackle this pandemic has to be solidly evidence-informed. It should be noticed that the immune system does play critical roles in fighting viruses. Studies show that T cells levels decreased continuously as the disease progressed. T cell-mediated cellular immune response, probably by immunological memory, is essential for direct virus eradication after infection whilst B cells functions in producing antibodies that neutralize virus.But, have distinct patterns of T cell response exist in different patients, suggesting the possibility of distinct clinical approaches. Efforts are concentrated to elucidate the underlying immunological mechanisms in SARS-CoV-2 pathogenesis and progression for better design of diagnostic, therapeutic and preventive strategies. We seek to identify biomolecules with the potential to act in biomarkers that predict how severe the disease can get. But it is important to warn that the plants that produce the compounds mentioned here should not be used without a physician prescription. Finally, we speculate that these compounds may eventually attract the attention of physicians and researchers to perform tests in specific contexts of SARS-CoV-2 infection, and if they show positive results, be tested in Clinical trials.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Plants/chemistry , SARS-CoV-2/drug effects , Biological Products/chemistry , Phytotherapy , Plant Preparations/chemistry , Plant Preparations/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL